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Patterns of cell wall growth and ornamentation in unicellular algae, mainly in
desmids, are compared with patterns generated by Tyson’s Brusselator, a two-
morphogen reaction—diffusion model. The model generates hexagonal arrays of points
in two dimensions, according well with the observed patterns of surface ornamentation
on desmid zygospores. Computed patterns in one dimension and of branching on a
circular disc account both qualitatively and quantitatively for morphogenetic patterns
that develop following cell division in several desmid genera. Cell wall ingrowths
appear to be under similar pattern control to wall outgrowths during morphogenesis,
which suggests the involvement of a reaction-diffusion mechanism in establishing and
correctly positioning the cell division septum. The application of the model to
morphogenesis in Acetabularia and diatoms is also discussed.

B

1. INTRODUCTION

An initially homogeneous chemical system can develop standing concentration waves if appro-
priate reactions occur involving autocatalytic and cross-catalytic interactions between two
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chemical species diffusing within the system. Since the appearance of Turing’s description and

Vol. 204. B 1074 37 [Published 16 September 1981

PHILOSOPHICAL
TRANSACTIONS
o

[ (¢
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to o2z

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. STOR ®
WWWw.jstor.org


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

548 T. C. LACALLI

analysis of this phenomenon (Turing 1952), and because of increasing interest in the general
class of dissipative structures of which Turing’s model is one example (Glansdorff & Prigogine
1973), biologists have sought to identify patterns in living organisms that might have arisen as
a consequence of a reaction—diffusion mechanism. Their strategy has been to compare patterns
found in living organisms with the predictions of the linear equations discussed by Turing or
of various specific nonlinear models. The most convincing comparisons have been those involv-
ing either a complex pattern or a number of related variants of one pattern, since greater
demands are thereby placed on the predictive power of the theory. For example, a remarkable
correspondence can be shown between the predicted patterns of wave harmonics on an ellipse
and the succession of compartment boundaries that appear on the roughly elliptical imaginal
wing disc of Drosophila during its development (Kauffman et al. 1978). In this example, pattern
develops in an epithelial sheet of many cells. The catalytic reactions presumably occur within
the cells, each cell acting as a well stirred unit of the system, while diffusion is responsible for
the transport of material between cells.

The suggestion that a reaction-diffusion mechanism might account for the patterns of
morphogenesis in unicellular algae was first made by Wardlaw (1953, 1955), but this suggestion
has not been explored in any detail. The patterns most likely to be of interest have not been
catalogued in an organized fashion, and there has been no analysis of specific reaction—diffusion
mechanisms regarding their suitability as models for algal morphogenesis. The present paper is
intended to remedy this oversight, with emphasis on morphogenesis in the group of freshwater
green algae known as desmids. In the examples to be considered, pattern is ultimately expressed
in the shape of the developing cell wall or, in the case of diatoms, of the siliceous frustule. By
and large, in these examples, careful examination has as yet failed to reveal an ordering of the
cell cytoplasm or of the cytoplasmic organelles that corresponds in any obvious way with
the developing pattern during the early stages of morphogenesis. Further, in many cases, the
continuous agitation of the cytoplasm by means of cytoplasmic streaming makes the conveyance
of pattern information through the cytoplasm seem unlikely. The supposition is therefore made
that pattern is generated at or near the surface of the cell. The system in which chemical
reactions and diffusion operate to accomplish this is taken to be two-dimensional, involving
one or more of (1) the cell membrane, (2) the approximately two-dimensional space occupied
by the cell wall and (3) the thin layer of cytoplasm lying immediately under the cell membrane
and excluded from the active streaming.

This survey of algal pattern is an extension of an earlier analysis of the pattern of pores found
in desmid cell walls (Lacalli & Harrison 197846). Patterns approximating the observed pattern
of pores can be produced by supposing that pores are initiated randomly over the surface of the
cell with initiation followed by the rapid development of an area of inhibition around each
within which no additional pores can become established. The degree of order that can be
achieved by such a mechanism is strictly limited and, as described below (§2), examples of
surface pattern are known in plant cells that are clearly too ordered to have been generated by
this means. The mechanism responsible for such patterns must therefore involve initiation steps
that are spatially more ordered than a random distribution of points. A reaction—diffusion
mechanism is one means of imposing a spatial periodicity on the initiation step, although it is
by no means the only way. Surface pattern in single cells nevertheless represents an attractive
system for testing the applicability of reaction—diffusion models to morphogenesis. It is reason-
able, at least initially, to assume that relatively straightforward sequences of reactions localized
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near the cell surface are responsible for the catalytic formation and destruction of the relevant
morphogenetic substances, with diffusion being the principal means of their transport in the
plane of the cell membrane and cell wall. Multicellular systems are potentially much more
complex. The entire synthetic and metabolic machinery of the cell is available to generate an
overall auto- or cross-catalytic effect on the formation and destruction of morphogenetic sub-
stances, and there are a number of ways, besides diffusion, for these to be transported between
cells.

The types of patterns to be expected of reaction—diffusion mechanisms have been discussed
in general terms by Gmitro & Scriven (1966) based on solutions to linear equations. For a
particular nonlinear model, some patterns will be quite similar to the predicted linear patterns
while others, if highly dependent on the nonlinearities, may be substantially different. One-
dimensional patterns tend to fall within the former category: when the intrinsic pattern wave-
length is small relative to system size a row of identical sine waves is generated in the linear
case, and, though the waveform may be altered, a simple one-dimensional periodicity is also
characteristic of the nonlinear models that have been studied (see, for example, Herschkowitz-
Kaufman 1975). For a wavelength roughly comparable to system size, a harmonic pattern
fitting the boundary conditions of the system is generated in both linear and, with some
modification, nonlinear cases (see, for example, Erneux & Herschkowitz-Kaufman 1975).
Other patterns and, in particular, pattern changes in response to changing parameters or
boundary conditions, appear to depend crucially on the nonlinear part of the governing equa-
tions. For example, the nonlinearities determine whether a simple, one-dimensional periodicity
translates in two dimensions into a square array, a hexagonal array or some other pattern (§3).

The model used throughout this paper, discussed in detail in §3, was developed by Tyson
and coworkers (Tyson & Light 1973; Tyson & Kauffman 1975). It is a variant of the
‘Brusselator’ model which has been subjected to extensive analytical treatment (Herschkowitz-
Kaufman 1975; Erneux & Herschkowitz-Kaufman 19794, b; Kubicek et al. 1978). Tyson’s
Brusselator has the important feature that the morphogen peaks, once established, are capable
of movement in response to changes to the system boundaries. Further, in response to an
increase in system size, a single peak can branch and produce additional peaks or other patterns.
Whereas some morphogenetic models depend for their usefulness on their inability to respond
in this way (e.g. the model proposed by Gierer & Meinhardt (1972)), the utility of Tyson’s
Brusselator with regard to algal morphogenesis is dependent on these behaviours, both because
of the branching in itself and because, in two dimensions, hexagonal arrays of points can be
generated by means of branching and movement of peaks.

Four basic pattern types are considered in the sections that follow: periodic arrays in one
and in two dimensions, harmonic fitting of simple waveforms (single peaks) to boundary
conditions, and generation of new patterns from the latter by branching. A number of variations
on these basic types occur in the algal examples discussed. Two-dimensional arrays and
dichotomous and more complex forms of branching are particularly well illustrated by desmids
(§4), and desmids therefore figure prominently in the comparison of theory with observed cell
patterns. Patterns of zygospore ornamentation in desmids, essentially hexagonal arrays, accord
extremely well with the two-dimensional patterns generated by the model. There is also good
agreement between computed patterns and patterns of semicell morphogenesis in desmids,
though with some unsatisfactory features. The appropriate computations do not specify pattern
unequivocally. Instead, they define a range of possible pattern behaviour, and not all features

37-2
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of semicell morphogenesis can be accommodated, even within this range. Nevertheless, signi-
ficant morphogenetic problems are potentially resolvable on the basis of reaction-diffusion
theory. Evidence from desmids suggests that both cell wall ingrowths and cell wall outgrowths
may be under the control of a single patterning mechanism and, further, that a reaction-
diffusion mechanism may be involved in specifying the plane of cell division. The computational
results are also compared with patterns in Acetabularia (§5) and diatoms (§6) with, in §7,
suggestions regarding possible experimental tests of the theory.

2. MEASURING ORDER: AN EXAMPLE WITH TOO MUCH ORDER

Since patterns of points on a two-dimensional surface and along a line are frequently referred
to in this paper, it is important to have some means of quantifying their degree of order to
allow comparison between them. The means adopted here is that of the Clark & Evans R
parameter, whose use for analysis of two-dimensional pattern (R, for two dimensions) has been
previously discussed in some detail (Lacalli & Harrison 19785). A one-dimensional analogue,
R,, is also employed.

The R parameter is the ratio between the mean of observed distances between each pattern
point, taken in turn, and its nearest neighbour (7a) to that expected for a random distribution
of points (7). In two dimensions, 7o = 1p~%, where p is the area density of pattern points. For
a perfect hexagonal array R, = 2.1491 and for a perfect square array R, = 2 exactly. Decrease
of R, below these values indicates either a loss of order (R, = 1 for randomness) or a change
from regular to clustered order. The latter is assumed to be absent in the examples to be
discussed.

The generation of two-dimensional patterns through an inhibitory field mechanism has
already been mentioned as a model for pore formation in desmids. Pattern points are initiated
randomly, and are surrounded by inhibitory fields within which no further points can form.
Claxton (1964) constructed examples of such patterns by hand and, for inhibitory fields of fixed
size, obtained values of R, of 1.757 + 0.005 (three trials). The observed order of pores is some-
what below this value, consistent with the lesser degree of order to be expected for inhibitory
fields with a time-dependent radius. The latter is more easily justifiable in chemical terms than
the constant-radius inhibitory field.

For a pattern of points in one dimension, 7 = 1/2p (Hertz 1909). The maximum value of
R, is then 2. From computer-generated inhibitory field patterns for quite large one-dimensional
systems, using the time-independent inhibitory field, the present author obtained values for R,
of 1.783 + 0.004 (18 trials) as a one-dimensional analogue of Claxton’s calculation.

Biological patterns that exceed the above R values for inhibitory field models are worthy of
special attention because, to account for such patterns, it becomes necessary to invoke mechan-
isms with greater than random ordering capability in the initiation step. It is important to
show that such patterns exist, since they are likely candidates for comparison with the patterns
generated by reaction—diffusion models.

The best documented such pattern for a unicellular plant system is the nearly perfect hex-
agonal array of spines (R, = 2.08) on the surface of developing Tagetes pollen grains. Heslop-
Harrison (1969) has followed the development of this pattern from the first appearance of small
papillae, representing projections from the cell wall surface of groups of structures known as
probacula, to the final stage in which most of the original space between adjacent papillae is
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obliterated by the growth of the papillae to form large spines. The hexagonal pattern is most
clearly shown in the early stages. Development of some surface features on pollen grains appears
to involve spatial ordering of the underlying cytoplasm. The grain apertures, for example, form
at points where cisternae of endoplasmic reticulum become closely applied to the cell membrane
(Heslop-Harrison 1968, 1972). A similar association of cytoplasmic membranes is seen adjacent
to developing probacula in some species, but the appropriate stages in Tagetes have yet to be
investigated in this regard. Regardless of whether such patterns are first generated at the cell
surface or deeper within the cytoplasm, the origin of hexagonal order is still unexplained.
Considering the small size of the papillae (radius ~ 0.2 um) compared with the distance
between papillae (ca. 2 pm from figure 1 of Heslop-Harrison 1969), it seems unlikely that the
pattern is simply a consequence of close packing of some larger structural element. An in-
hibitory field mechanism, at least in its simplest version with random initiation, is clearly an
inadequate explanation for the pattern, and one must search instead for mechanisms that
generate substantially more order in the first instance.

3. COMPUTED WAVE PATTERNS: TYsoN’s BRUSSELATOR

The model used throughout this paper for generating patterns was developed by Tyson and
coworkers (Tyson & Light 1973; Tyson & Kauffman 1975) principally as a model for studying
time-oscillatory phenomena. The mechanism involves formation and destruction of two
morphogens, X and Y, with rate constants a—d, as follows:

a
reactants —— Y,
b
Y— X,
c
Y +2X — 3X,

a
X —— products.

The rate equations, including diffusion, with concentration variables X and Y and diffusivities

P and Dy, are:
0X/0t = bY +cX2Y —dX + D4 V2X,

0Y/0t = a—bY —cX2Y + 29y V?Y. (1)

For different choices of parameter values, the model can generate a variety of behaviours,
which include spatially uniform limit cycle oscillations around the steady state, stable spatial
waves or oscillating spatial waves. A simple analysis of the conditions on parameters required
to produce these various behaviours is given by Lacalli & Harrison (1979). For a one-
dimensional system, the spatial part of the solution of the linearized form ofequations (1) is in the
form of sine waves, with waves of different wavelength, each with a characteristic exponential
growth rate. Spatial pattern depends upon having a maximum in the curve relating growth
rate (kg) and wavelength (A) at some finite wavelength (Am). There is a critical length (/,)
below which no pattern will develop. For a system longer than /,, a pattern will develop with
pattern wavelength as close to Am as the boundary conditions permit. Formulae for calculating
kg, Am and /[, can be found in the previous papers in this series (Lacalli & Harrison 19784, 1979).
The patterns and pattern changes figured in this section have all been carried out as explicit,
finjte-difference calculations based on equations (1) except for the example shown in figure 94,
which is for the Gierer & Meinhardt model. Because of the conditions on diffusivities, that X
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must be the more slowly diffusing of the two morphogens, concentration peaks are much sharper
for X than for Y. The figures show X concentration only except figure 1¢, d which also show Y.
The concentration profile for Y is in all cases out of phase with X and much shallower. In
calculations showing the effect on pattern of growth in system size, the actual size of the system
has been kept the same for ease of computation while its effective size, relative to Ay, is in-
creased by reducing Ay through change of rate constants and diffusivities.

(a)

l.lr 4

1.2

\
e

=
2
g 1 Il i 1 1
=
]
g (c)
Q
Woo2r -
0 1 1 1-— 1 1
(d)
2+ .

distance

FiGure 1. Generation of ternary pattern from initial steady state (solid line) and random disturbances. X con-
centration (solid curve) is shown at (a) 4000, (b) 8000 and (¢) 16000 iterations. (d) Reverse ternary pattern
generated in the same way. Y concentration is shown as a dotted curve in (¢) and (d). Details of this and
other computations are given in §8.1.

In choosing a simple nonlinear model such as Tyson’s, undoubtedly much of the richness of
pattern behaviour of more complex models is lost. Tyson’s model does, however, produce a
variety of patterns whose development, even if simple, is as yet incompletely understood. An
analysis of these is a logical first step in exploring the behaviour of more complex models and,
in addition, the more complex models are quite likely to be homomorphic under many condi-
tions. That is, they will be characterized by patterns and pattern changes that are either
identical or fundamentally related.
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3.1. Pattern in one dimension

Beginning with steady state values of X and Y, introduction of random concentration fluctua-
tions in a one-dimensional system of appropriate length (/ & Am) with zero-flux boundary
conditions will generate a single wave with central maximum of X, as shown in figure 1a-¢, or
its reverse, with a central minimum (figure 1d). The single wave pattern will be referred to
here as ternary pattern because there are three regions over which deviations from the steady
state give either maxima or minima in concentration. The half-wave pattern with two such
regions (e.g. figure 64) is then a binary pattern.

_(a

X concentration
o

é

distance

FicUrE 2. Branching of ternary pattern in a growing one-dimensional system.

With the ternary wave from figure 1¢ as a starting point, figure 2 shows the progressive
bifurcation that occurs with gradual doubling of the effective length of the system (from 0.9 Ay,
to 1.8 Am). The central maximum is driven down to produce two lateral peaks which move
apart until they are twice as far from one another as each is from the boundary. Further in-
crease in system length results in a similar and simultaneous branching of both peaks to give
four equally spaced peaks. Such behaviour is obtained for a variety of parameter choices within
the regions of parameter space giving stable spatial pattern (regions (¢) and (d) in Lacalli &
Harrison (1979)), and the parameters for figure 1 are located well within this region (see §8).
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In contrast, if parameters are chosen so that kg at Ap is reduced towards zero, a different re-
sponse is obtained (figure 3) for a comparable change in system length. The concentration
gradient in X is itself much shallower, and new concentration maxima are generated at the
boundary rather than the centre.

The above examples assume a uniform system in which parameter values are everywhere the
same. It is not necessary that this be so. Rate constants may contain concealed concentration
dependence (e.g. on catalyst concentration) and could therefore vary across the system.
Gradients in viscosity across the system would have a similar effect on diffusivities. This means

(a) /\

\

X concentration

distance

Ficure 3. Branching of ternary pattern in a growing one-dimensional system with marginal pattern growth
rate (k, at A, is about g that in figure 2).

that Am or kg may vary over the system and that boundaries in parameter space separating
regions of qualitatively quite different pattern behaviour may be crossed. This would con-
siderably expand the possible range of patterns and pattern changes for even the simplest
models. Given that gradients of various types can usually be demonstrated across the structures,
cells or tissues participating in pattern-forming events in living organisms, it is appropriate to
consider the effect on computations of gradients in parameter values. Figures 4 and 5 show two
examples with a gradient introduced in the rate constant b and hence in the value of kg at Ap.
In figure 4, b is twice as large at the boundary as at the centre; kg at Ay is then largest at the
centre and gradually decreases, but is still positive, at the edges. The gradient is reversed in
figure 5, with 4 twice as large at the centre as at the boundaries. Relative growth of the system
to about three times its initial length (to 3.4 Ap) produces three peaks in both examples, but
by different means. In figure 4 there is an obvious struggle between the branching tendency
at the centre (maximum £g) and that near the boundary (minimum k), with the boundary
finally winning. In figure 5, the usual splitting of the central peak occurs, but a third peak is
then generated at the centre of the system (minimum £g).
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The author has not studied the effects of gradients in parameter values on pattern in great
detail. The two examples in figures 4 and 5 are included primarily as a means of introducing
the following two general points regarding such gradients.

(1) Parameter gradients offer an alternative to explicit boundary conditions. Reaction—
diffusion models usually invoke either zero-flux (antinodal) or fixed-concentration (nodal)
boundary conditions, or avoid the question by having an unbounded system (e.g. the surface

4 5
(a) (a)

0 1 1 1 1 L 0 1 1 1 e I
(b) (b)
2r E = -
B f’\ P /\/\

g B \_/ \_/ g n
§ 0 1 1 1 1 1 g 0 1 1 1 1 1
= 8
: :
g | |
™ i

VRV VRAZRANVAN

distance distance

FicUre 4. Branching of ternary pattern in a growing one-dimensional system with gradient in  (maximum b
at edges).

FIGURE 5. Branching of ternary pattern in a growing one-dimensional system with gradient in b (maximum &
at centre).

of a sphere) which translates into a periodic boundary condition in computations. It is not
always clear how these different conditions are to be interpreted with regard to specific bio-
logical examples. The periodic boundary condition can be quite straightforward. A spherical
surface, for example, would be appropriate for patterns generated on the surface of a spherical
cell. The zero-flux condition makes sense for a chemical or biological system with discrete edges
or boundaries. Interpreting the fixed-concentration condition depends to a much greater extent
on the nature of the particular model being considered. In living organisms, boundaries do not
always clearly separate the parts of a tissue or cell involved in pattern formation from those
that are not. The use of parameter gradients may be the most appropriate means of dealing
with such situations. Parameter values capable of supporting a pattern in one part of the

38 Vol. 294. B


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

556 T. C. LACALLI

system would gradually reduce to values incapable of generating pattern in surrounding parts
of the system. This is essentially what has been done in the computation shown in figure 15,
in which a gradient similar to that in figure 4 is extended so that kg is negative at the boundary.
This allows pattern changes not permitted by the more conventional zero-flux and fixed-
concentration boundary conditions.

L L 1l ]
g

g

2 2r 1t -
g

8

i \K

0 1 1 1 1 1 1
distance

Ficure 6. Patterns generated from steady state by random disturbances in a system with length in the binary
region. (a) No parameter gradient. (b) Gradient in a (maximum a at centre).

(2) Parameter gradients may influence the generation of an initial waveform from random
fluctuations. The same initial waveform, a well established ternary wave with central maxi-
mum, is used for both figures 4 and 5 despite the parameter gradient being reversed between
the two. Random disturbances to the steady state will not generate this same waveform in both
cases. In computations like that shown in figure 14—, it is the gradient in figure 5 that produces
a ternary wave with central maximum, while the figure 4 gradient gives a reverse ternary
pattern with central minimum. This does not necessarily mean that the pattern change shown
in figure 4 would be impossible in a biological system. Gradients may be supposed to come and
go in a developing organism, so that an initial pattern might well develop under the influence
of one gradient or set of gradients while growth and pattern change might not occur until a
second set of gradients had been established.

Where several patterns are competing with one another, a further effect of parameter
gradients will be to suppress some of these while favouring others. Gradients symmetrical about
the centre of a system, as in figures 4 and 5, will suppress patterns that do not share this same
symmetry. Ternary pattern can then develop even if the system is of a length such that &, for
binary pattern exceeds that for ternary. An example is shown in figure 6. The two patterns
develop from random disturbances as in figure 1. For the length of the system (I = 0.6 An), kg
for binary pattern (from figure 11) is 1.8 times that for ternary. With no gradient, a binary
pattern develops (figure 6a). With a modest gradient in a (a is increased by 16 9, at the centre)
so that kg is largest at the centre, binary pattern is suppressed in favour of ternary (figure 65).

3.2. Pattern arrays in two dimensions

It is not immediately obvious what the two-dimensional equivalent of one-dimensional
periodicity will be. Even if the resulting pattern is completely regular, either a square array or
hexagonal array might be produced.

For Tyson’s Brusselator, computations generate hexagonal arrays which develop by means
of branching and movement of the morphogen peaks. Figure 7 shows the development of one
such pattern. The computation is carried out on a square with edges approximately 31, in
length. Periodic boundary conditions are used so that the square (in dotted lines) is surrounded
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on all sides by replicates of itself, portions of which are included in the figure to show the relative
positions of the points more clearly. Initial conditions are steady-state values for X and ¥, with
random disturbances introduced throughout the computation. By 2000 iterations, nine peaks
of comparable height emerge, giving a pattern with R, = 1.846. A period of peak branching
and movement follows during which the pattern becomes progressively more regular. By 12000
iterations, 12 peaks are present and R, = 2.00. Spacing between peaks at this stage is roughly
0.85 Am. There is no reason to suppose that, if the introduction of random disturbances were

(a) (b) (c)
: ° ° : [ L ! ° [ ) [} °
o i ° . . :'o o ° » o ol |@ ° ° ° °
'Y ° ° ° L] ° ° b
| q
| [ ] [ ] | [ \ \ . . . . o
.I .l ' '
I | e o | o © ° ° ° °
S (N
° o ° °
: o . | ° ° » o |©® ° ° ® °

FIGURE 7. Stages in the generation of hexagonal pattern in two dimensions from steady state by random dis-
turbances at (a) 2000, (b) 4000 and (c) 12000 iterations. Moving peaks are shown with their shoulders in (b).

F1GURE 8. Six- and three-connected plane nets derived from a hexagonal array of points.

stopped, and given sufficient time, the pattern would not develop arbitrarily close to a perfect
hexagonal array. Five additional computations like that in figure 7 were done with different
ratios of Am to edge length of the square. All that were followed long enough showed the
development of hexagonal pattern. The regularity of the outcome in these computations
does not, therefore, appear to be dependent on a fortuitous choice of An relative to system
size. Measurements on the initial pattern of peaks for the four computations (including figure
7a) with clearly defined peaks gave a value for R, of 1.84 + 0.03. In the two remaining cases
the shoulders and varying heights of the peaks prevented determination of a meaningful value
for R,.

The nearness of figure 7¢ to a hexagonal array is evident by inspection. Each pattern point
has six immediate neighbours roughly equidistant from one another. This represents a sub-
stantial improvement over figure 7a, for which, despite a relatively high R,, choice of neigh-
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bouring points and their number (five, six or seven) is much less obvious. With X maxima taken
to be points of an array, the X minima can be approximated as a continuous plane net defining
a domain around each point. For the hexagonal array, the corresponding plane net is a three-
connected net of regular hexagons with a pattern point at the centre of each. This can be con-
structed as follows. Neighbouring array points are connected to give a regular six-connected
net (figure 8, left side). Connection of the centres of adjacent triangles then gives the three-

' "/’b\ \.
' ”' \‘o ‘
A b"?:”l‘\:. ‘ / ‘\\'\'

FIGURE 9. Patterns in a two-dimensional system, concentration along the vertical axis, for (a) Tyson’s Brusselator,
corresponding to the pattern in figure 7¢, and () the Gierer & Meinhardt model. Galculated values for
An in (a) and (b) are 8.4 and 6.9 spatial units respectively.

connected net of hexagons (figure 8, right-hand side). As expected, the three-connected net
corresponding with figure 7¢ is very close to being regular while an analogous construction with
figure 7a gives a net with some five- and seven-sided polygons, depending on choice of neigh-
bouring points. For some biological patterns, particularly if too few pattern points are visible
for an order parameter like R, to be accurately calculated, nets of this type are a useful means
of dealing with pattern order (see, for example, §4.1).

It is easily shown that the generation of hexagonal arrays is not a general property of all
reaction—diffusion mechanisms. The model of Gierer & Meinhardt (1972), for example,
generates patterns in two dimensions that are much less regular, and the morphogen peaks, once
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formed, do not move. Figure 9a shows, in a three-dimensional plot, the concentration profile
for X corresponding with figure 7¢. This can be compared with the pattern generated by the
Gierer & Meinhardt model, shown in figure 94 for their morphogen 4. As in the previous two-
dimensional examples, the computation was begun with steady state concentrations of both
morphogens and pattern emerged from the continuous introduction of randomly placed
fluctuations in concentration. For the pattern shown, R, = 1.73. The pattern is completely
stable, and does not change with further computation.

3.3. Branching on a circular disc

This analysis of pattern change for a bounded two-dimensional system is done on a circular
disc because the desmid septum, on which many characteristic desmid patterns develop, is
initially circular. A hemispherical surface would better represent the shape of the septum at
later stages (§4.2) and the hemispherical tips of growing semicell lobes, but the circular disc is
applicable to these at least as a first approximation. Harrison et al. (1981), using a hemispherical
system and Prigogine’s Brusselator, obtain pattern changes very similar to those discussed here
for the disc.

The spatial part of solutions for a circular disc to the linearized version of equations (1),
expressed in polar coordinates (7, #), are of the form

T (k1) cos nb,

where J, is the nth Bessel function. Zeros in the derivatives of J,,(«) occur at particular values
of the argument & = a,;. For a disc of radius 7, and zero-flux boundary conditions, the appro-
priate spatial mode, abbreviated J,;, is obtained when the jth zero of the derivative of J,, occurs
at the boundary. This fixes the value of £,; associated with the mode J,; for 7, as

kpj = %p;/7o

Figure 10 shows a selection of spatial modes that are relevant to interpreting the behaviour of
Tyson’s model on a disc. The subscript n corresponds with the number of radial nodes in the
pattern, and j corresponds with the number of circular nodes. Spatial modes not encountered
in any form in the computations have been left out. These include, for example, the n = 1
modes, having a single radial node and therefore less than twofold symmetry.

In discussing the development of patterns on a circle it is useful to have an equivalent, for
the circle, of Ay to serve as a measure of pattern size. The logical choice is that of the radius
(rm) at which growth of the J,, pattern is maximal, since this mode is roughly equivalent to a
one-dimensional ternary wave rotated about its midpoint. Changes in system size are therefore
given in terms of 7y, which is calculated as follows:

Tm = Xy Am/21 = 0.61A 4.

The calculation of growth rates for the various spatial modes follows that given by Lacalli &
Harrison (1979) for one dimension, but with £,; replacing w (=2n/2). Figure 11 shows plots
of growth rate against radius for the patterns shown in figure 10, with a typical choice of
parameters and with radius expressed in terms of r,. Two one-dimensional patterns are in-
cluded for a system of length /, also expressed in terms of rm.

In the one-dimensional computations (§3.1), the starting point was a ternary pattern
generated from random disturbances. The starting point for the computations in this section
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is a single central morphogen peak, a nonlinear development of the J,; mode, with radius near
rm and zero-flux boundary conditions. This pattern is not easily obtainable from random dis-
turbances. Instead, with zero-flux boundary conditions, patterns develop that correspond with
modes of the j = 0 series of .J,;; with concentration waves developed around the boundary and
decaying to steady state values near the centre so as to give a kind of fluted disc appearance.
The failure of the central peak to develop is not a particular problem in the present context
since, in the biological examples to be discussed, the J,, pattern is not required to arise directly
from the steady state. Altered boundary conditions or introduced gradients could, however, be
used to encourage the development of the J, pattern from disturbances to the steady state.

J03

Jol J02
J21 Jsl J4l JGI ‘[81

Ficure 10. Selected pattern modes in one dimension and for the circular disc.

In a number of computations on discs and hemispherical surfaces by the implicit Crank-
Nicolson method (Crank 1975), L. G. Harrison & G. D. Zeiss (personal communication and
Harrison ef al. 1981) have found the pattern changes accompanying increase in system size to
be entirely dominated by radially symmetric pattern modes. Thus, on the disc, the initial peak
(J o) first flattens, then collapses in the centre to give a ring (J,,), which expands until, in some
computations, a central peak reappears (J,,). The results of finite difference computations
(figures 12, 13) show a similar pattern sequence in early growth stages, but various types of
circumferential branching occur as growth proceeds to give patterns resembling members of
the j = 1 series of pattern modes. There is a considerable overlap of growth rate curves for the
various j = 1 modes (figure 11), and a number of these have quite similar growth rates in the
size range under consideration. Only selected modes appear, however, for the most part being
those whose symmetry corresponds with the biases and artefacts inherent in the computations.
In figure 13, a square grid with the corners removed is used to approximate circular shape.
The boundary, in fact, then has fourfold symmetry, and the patterns that develop also have
fourfold symmetry. In figure 12, a 24-fold symmetry is imposed on the computation by the
choice of the angular increment, and the symmetry of the resulting pattern is related as a
simple multiple. This sensitivity to global features of the system such as symmetry, boundaries
and boundary conditions is a well known characteristic of nonlinear reaction-diffusion equa-
tions (see, for example, Bunow et al. 1980) and of nonlinear equations in general.

The computation shown in figure 12 was done in polar coordinates, the angular component


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

OF

Downloaded from rstb.royalsocietypublishing.org

MODELS FOR ALGAL MORPHOGENESIS 561
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Ficure 11. Growth rate (k,) against system size for the pattern mudes shown in figure 10. The graph shows, for
a given system size, the relative magnitude of &, for the various pattern modes that can develop (i.e. k, > 0)
at that size. Size, as length (/) for one-dimensional pattern or radius (r,) for the disc, is scaled to r,.
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Ficure 12. Pattern change on a growing dlSC, calculation in polar coordinates.
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Ficure 13. Pattern change on a growing disc, calculation in Cartesian coordinates.

B

Ficure 14. Pattern change on a growing disc with twofold symmetry, approximating an oval.

being divided in relatively coarse increments of n/12 for reasons of cost, and plotted on a
Cartesian grid. System size is 0.96, 1.36, 1.52 and 2.157, respectively in figure 12a-d. If
growth is slow and continuous, the entire sequence is observed, each pattern being character-
istic of a particular size range and stable to introduction of random disturbances at that size.
Jg,; is the only pattern mode of the j = 1 series to appear, despite the fact that J,;, J,, and
Jg; have positive growth rates through much of the size range, and symmetry compatible with
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the computational grid. J4, develops very slowly, however, and is only transient. Rapid growth
to 2.157y would prevent its appearance entirely.
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Figure 13 shows the pattern change in a computation in Cartesian coordinates for growth
from 0.81ry, (figure 13a) to 0.95, 1.15, 1.40, 1.82 and 2.15ry, respectively in figure 134-f. The
initial conversion of J,, to J,, is followed by a sequence of patterns combining elements of
Joss J 41 and Jg, to give first four and then eight peaks. Patterns that are not compatible with
the fourfold symmetry of the system, including J,,, are completely suppressed. A situation in
which J,, does dominate over J, is shown in figure 14. Here the system is given a marked
twofold symmetry by trimming off two sides so that an approximately oval shape is obtained,
with a length to width ratio of 1.2. Growth is from 0.817 for half the long axis in figure 144
to 1.15ry in figure 14 b—d, which shows the progressive development at this size of a dichotomous
branch oriented along the long axis.

From these and a number of additional computations on a disc, including some with intro-
duced gradients, the following general conclusions emerged. Pattern modes corresponding to
small 7 values (n = 2 or 3) dominate over J,, only when strongly favoured by system symmetry,
as in figure 14. Within an intermediate range (n = 6-8) whorls of distinct peaks form much
more readily, but patterns corresponding to large n values (» > 12) cannot be obtained in the
same fashion. Before the J, pattern can expand sufficiently relative to r, to give large numbers
of peaks, some radial pattern change will occur. This usually involves the appearance of a new
peak at the centre of the disc or an additional ring of peaks around the boundary, or radial
splitting of the existing structure. It is therefore not possible to generate arbitrarily large num-
bers of peaks in a single whorl by means of Tyson’s model alone.

Despite boundary effects, a dichotomous branch can be generated on a circular disc if the
boundary conditions are appropriately adjusted. This is shown in figure 15, where, as in the
one-dimensional case illustrated in figure 4, a radial gradient in 4 is introduced so as to leave a
rim around the central peak where £, at Ap, is negative. The actual boundary of the computa-
tion is then well separated from the region in which pattern develops, and this appears to damp
out the effect of the boundary. The initial pattern (figure 154) occupies a disc with radius
2.1r,,. Modest growth, to 1.56 times this initial size allows a dichotomous branch to form at the
centre. A second pair of peaks, oriented at right angles to the first, develops more slowly at
approximately the point on the radial gradient at which kg goes to zero. The unusual boundary
conditions prevent ready comparison of system size between figure 15 and the previousexamples.
If, however, the distance from the disc centre to the X minimum in figure 154 is taken as
roughly representative of an effective rm (=ry,) for the computation, then growth is: to 1.27r,
in figure 154, then to 1.56r,, in figure 15¢, with progressive stages of pattern development at
this size shown in figure 15¢—¢. At 1.567y, growth rate for the dichotomous pattern, J,,, exceeds
that of the other competing patterns (figure 11). Subsequent movement of the four peaks in figure
15¢, inward for the outer pair and outward for the central pair, suggests that stability would
be achieved only with all four equidistant from the centre. Pattern changed very slowly during
the later stages of the computation; so it was not followed to a stable endpoint. Figure 15 fails
to produce the desired pattern, that is, a stable dichotomous branch. The twofold symmetry of
the early computational stages could, however, be saved and, in fact, amplified by making
some additional assumptions about what happens to the system between the time of the first
appearance of the branch and the final fourfold, or nearly fourfold, symmetry. It could be
supposed, for example, that the morphogen was involved in the control of system growth. If
high morphogen concentration resulted in localized expansion in area, the effect of a pattern
like that in figure 15¢ in terms of growth in the system would be twice as great along the axis
of the branch as at right angles to the axis. Such asymmetric growth could very readily establish
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Ficure 15. Pattern change on a growing disc with gradient in b (maximum b at the boundary).

a twofold symmetry in system shape sufficient to completely suppress the more slowly developing
fourfold pattern.

In summary, the general properties of Tyson’s Brusselator include the generation of harmonic
and periodic patterns, the latter giving hexagonal arrays in two dimensions, and of rings and
whorls of peaks on a growing circular disc. The final outcome of the latter pattern change,
whether ring or whorl of peaks, is strongly dependent on boundary effects and biases in the
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computation. This does not invalidate the computational work discussed in this section since
various biases, operating through symmetry features, gradients or structural anisotropies, may
well be involved in the development of many biological patterns.

4. DESMID PATTERNS
4.1. Zygospores

Desmids have both a vegetative phase in which clones of cells are produced by repeated
mitosis, and a sexual phase in which fusion of two vegetative protoplasts results in formation
of a thick-walled zygospore (figure 16). Desmid zygospores are spherical or nearly so in most

a.

(a)

FiGURrE 16. Micrasterias. (a) Vegetative cell of M. radiata showing polar lobe (p.), one lateral wing (w.), isthmus
(i.) and polar axis (a.). (b) Zygospore of M. denticulata. From West & West (1905, vol. 2). (Magn. x 200.)

species and are usually ornamented with spines. These develop as localized outgrowths from
the initial wall produced by the fused protoplasts. The spines appear to elongate by means of
tip growth (Kies 1970) and, in many species, develop terminal branches (see, for example,
figure 1654). A thick inner wall is then deposited with use of the initial wall as a template, and
this becomes the wall of the mature zygospore.

Published drawings of a number of desmid species show the zygospores’ ornamentation, but
special attention has seldom been paid to the exact arrangement and spacing of the spines,
which, in the present context, is their most significant feature. Because of the zygospores’
curvature and opacity, light micrographs fail to show spine patterns clearly. Scanning electron
micrographs, which give a three-dimensional view of the surface, are far more revealing.
Although relatively few such micrographs have yet been published, those that have establish
without question the basically hexagonal arrangement of the spines to give pattern arrays with
degree of order very similar to that seen in the 7agetes pattern discussed in §2. The majority of
scanning micrographs show only the mature zygospores, whereas what is really needed is a
complete survey of pattern development from the first appearance of spine initials, as has been
done for Tagetes. Because desmid zygospores do not expand or change shape during spine
development, however, the final spine pattern can be taken as a good approximation of the
pattern of spine initiation.

A Cosmarium zygospore is shown in figure 17. Because of surface curvature and the coat of
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mucus obscuring many of the spines, spacing cannot be measured between enough spines for a
meaningful analysis of the pattern as a whole. The tendency to local hexagonal order for the
few spines visible can, however, be made clear by constructing the corresponding plane nets
described in §3.2. These are shown in figure 18. The local ordering is, by eye, close enough to
the hexagonal pattern generated by Tyson’s Brusselator (figure 7¢) that values of R, close to
2 for the pattern would not be surprising.

Ficure 17. Zygospore of Cosmarium botrytis. From a scanning micrograph, fig. 17 of Pickett-Heaps (1974).
(Magn. x 1600.)

Arrays of hexagons as in figure 184 can be extended indefinitely to fill a plane, but will not
form a closed surface. Introducing polygons with fewer sides into the array will accomplish this
where, following Euler (Thompson 1942), if only pentagons are used, exactly 12 would be
required. A large number of polyhedral surfaces are then possible having 12 pentagonal faces
and various numbers of hexagonal ones (see Crowther et al. 1976, for examples). Cosmarium
zygospores oblige by having some pentagons in their pattern array: spines with five regularly
spaced neighbours are visible in some of the micrographs (see, for example: Pickett-Heaps 1975,
fig. 6.165; Berliner & Guth 1979, figs 4, 6). For zygospores that are smaller relative to inter-
spine distance than Cosmarium, the proportion of spines with five neighbours should increase
relative to those with six. In fact, pentagonal arrangements are more numerous in published
pictures of Staurastrum furcigerum zygospores (figure 19), in which the ratio of interspine spacing
to spore diameter is 1:3, compared with a ratio of about 1:7 for Cosmarium botrytis.

The author has not followed the behaviour of Tyson’s Brusselator on a spherical surface in
computations; so it is not clear what the analogue of the hexagonal pattern developed by the
model on a plane would be on a curved surface. For a sphere chosen of appropriate size to
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accommodate exactly 12 pattern points, placing these at the vertices of an icosahedron is the
most likely solution as it gives the most regular possible arrangement, each point having five
equivalent neighbours. It remains to be seen how pattern points in excess of 12 would be
incorporated into this initially pentagonal array, but a mixture of pentagons and hexagons as
seen in the zygospores themselves seems a reasonable possibility.

Ficure 18. The arrangement of spines on the Cosmarium zygospore shown in figure 17 with the corresponding
plane nets drawn in. (Magn. x 1030.)

(7
S
%

Ficure 19. The arrangement of spines on a zygospore of Staurastrum furcigerum with the corresponding plane nets
drawn in. From a scanning micrograph, fig. S8, appendix I, Pickett-Heaps (1975). (Magn. x (40.)

4.2. Patterns in dividing cells

In the placcoderm desmids, a typical vegetative cell consists of two halves, or semicells, joined
by overlap at an isthmus which is usually narrower than the rest of the cell and so appears as a
constriction (figure 16a). The principal axis of the cell, the polar axis, passes through the two
semicells and the isthmus. In Micrasterias, as shown (figures 164, 20a), each semicell has a
central polar lobe and two oppositely placed lateral wings. Thus there is twofold rotational
symmetry about the polar axis. Other desmid genera and certain abnormal forms of Micra-
stertas have other symmetries.
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Like zygospores, vegetative cells may be ornamented with a variety of bumps and spines.
The evidence suggests that similar mechanisms may be involved in the formation of these
structures regardless of the life history stage at which they appear.

(1) Whether on zygospore or vegetative cell, the structures often have very similar mor-
phology. For example, the slender branched lobes into which lateral wings of M. radiata are
divided (figure 16a) closely resemble the spines of many Micrasterias zygospores. And, as a
survey of West & West (1904-1923) readily shows, the desmid genera with the most highly
ornamented vegetative cells (Micrasterias, Staurastrum, Xanthidium) tend also to have the most
elaborate zygospore ornamentation.

(2) The cell walls involved in morphogenesis in both cases are very similar in appearance in
electron micrographs (Kies 1970; Kiermayer 19704). Both are of the primary wall type, that
is, thin and composed of randomly oriented cellulose microfibrils. The primary wall is a tem-
porary structure in both cases, the final wall being the result of secondary deposition for which
the primary wall serves as a template.

(3) Morphogenesis is by means of tip growth in vegetative cells (Lacalli 1975a), and this is
undoubtedly also the case in zygospores (Kies 1970).

Although the patterns of ornamentation seen on vegetative cells are far more varied and
complex than the simple pattern arrays characteristic of zygospores, this paper proposes that
patterning is governed by the same reaction—diffusion mechanism in both. No other satisfactory
explanation has been proposed for pattern in either case. For example, despite an extensive
search, no evidence for an underlying cytoplasmic order that might influence semicell shape
has as yet been discovered (Selman 1966; Kiermayer 19704). Kies (1970) found the distribution
of some cytoplasmic organelles to parallel the morphogenetic pattern in zygospores, but has
not shown this to be of causal significance.

The events involved in replication of species-specific semicell pattern following mitosis are
shown in figure 20 for Micrasterias, the genus most extensively studied in this regard. A girdle of
primary wall material is first deposited on the inside of the secondary wall at the isthmus
(figure 205). This thickens and widens so as to allow the semicells to detach and separate from
one another. A septum is then established around the circumference of the girdle at its midpoint
(figure 20¢). Inward growth of the septum separates the cytoplasm of the two daughter cells
by telophase, while progressive splitting of the septum results in two flattened hemispherical
bulges at the stage shown in figure 204. To this point the new primary wall is, as far as can be
distinguished, entirely symmetric about the polar axis. Subsequent development (figure 20¢)
produces a twofold symmetry corresponding to that of the parent semicell. This is seen in the
three-lobe stage as growth sites responsible for the two lateral wings and polar lobe are estab-
lished. Repeated bifurcation of the lateral sites produces, in succession, five-, nine- and seven-
teen-lobe stages. The three-lobe stage is thus quite transient, but evidence for its existence as a
distinct stage is available from u.v. irradiation studies (Waris & Kallio 1964; Hackstein-
Anders 1975) and laser damage tracings (Lacalli 19754).

A proposal as to how Tyson’s Brusselator might produce the patterns in figure 20 is shown in
figure 21. With appropriate assumptions, the pattern sequence in Micrasterias to the three-lobe
stage can be accommodated. The initial extent of the girdle appears to be defined by the nature
of the adjacent secondary wall (Lacalli 1973). Deposition is at first uniform, suggesting that any
governing morphogen must be evenly distributed, that is, at uniform, steady state concentra-
tions. If one assumes that some increase in girdle width can occur as a consequence, the critical


http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

MODELS FOR ALGAL MORPHOGENESIS 569

F1GURrE 21. One-dimensional pattern modes matching the sites of wall deposition on girdle and septum as seen
in section. For genera in which rings or rings of spines develop, the third dimension for (a)—(d) is simply a
figure of rotation about the polar axis. For Micrasterias, (¢) and (d) would be sections through a dichotomous
branch which, in three dimensions, corresponds to a pattern change like that shown in figure 14. Initiation
sites for the three semicell lobes (according to Lacalli 19754) are indicated by arrows in (d ).
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size for ternary pattern across the width could be crossed. For ternary pattern with central
maximum, if concentration maxima result in localized wall deposition, a septum-like ingrowth
will be established at the midpoint (figure 214). Ingrowth will continue (figure 214) as long
as the surface occupied by the morphogen wave, taken here as the inside surface of the wall or
the membrane, remains within the size range for ternary pattern. When the annular septum
has completed its separation of daughter cells, two separate morphogenetic systems are created,
comprising the inside surfaces of the two hemispherical bulges (figure 21¢). The waveform

F1GuUrE 22. Micrasterias denticulata, cell from a mutant clone lacking the polar lobe. From unpublished micrographs
supplied by D. H. Tippit & J. D. Pickett-Heaps. (Magn. x 270.)

inherited by each from the previous stages of septum growth has a central maximum, thus
corresponding to the initial pattern used in circular disc calculations in §3.3. The appearance
of growth sites in various patterns on the hemispherical bulge in different desmid genera
following septum completion suggests that this event should correspond with branching of the
governing morphogen wave (figure 21d). Examples can be cited giving growth patterns
suggestive of a dichotomous branch (Micrasterias, disregarding the polar lobe), rings, or whorls
of peaks (Bambusina and Staurastrum, see below). For these examples, beyond qualitative
pattern similarities, the relative proportions of girdle, septum and branch points should be
quantitatively comparable. The sequence proposed in figure 21 requires further discussion,
however, before the qualitative predictions of the model are examined (§4.3).

(1) The polar lobe

The Micrasterias polar lobe is not accounted for in the above sequence since the central peak
is lost when dichotomous branches form (e.g. figures 14, 15). In a previous analysis of Micra-
sterias morphogenesis (Harrison & Lacalli 1978), the polar lobe and wings were considered
together as consequences of a linear wave pattern with three morphogen peaks. The three lobes
were therefore taken to be identical, at least with regard to the means of their initiation. With
Tyson’s model, there are various ways to regenerate the central peak following branching (e.g.
with parameter gradients), but the author has been unable to do this in conjunction with a
dichotomous branch. The desired pattern, a single row of three peaks across one axis of a
circular disc, appears to be incompatible with the symmetry of the disc.

There may, however, be no need to specify the polar lobes and lateral wings by a single
mechanism. Lateral wings must be precisely positioned on an otherwise undistinguished
expanse of septum wall. The polar lobe arises at the centre of the hemispherical bulge at a
point already distinguished from surrounding wall by being the point of closure of the growing
septum. The polar lobe is itself not an essential part of the pattern. Mutant strains have been
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isolated that lack this lobe altogether, yet have normal wings (figure 22). And in double cells
produced by failure of the septum to close, the wing lobes, which must then be specified on an
annulus rather than a disc, are often normal while the polar lobe is missing. The polar lobe
differs from the wings in several respects. Beyond the obvious differences in shape and degree
of branching, there are differences in patterns of wall deposition and response to laser damage
(Lacalli 19755). It therefore may not be an essential test of a morphogenetic model that it
account for the polar lobe.

FicurE 23. Pattern generated on a narrow band from steady state by random disturbances, gradient in a across
the width, with maximum a along the midline. (2) An early computational stage. (b) The final pattern.

(ii) Establishing the septum

By means of Tyson’s Brusselator, it is not a simple matter to establish the waveform that
would be required to generate the septum. A ternary wave with central maximum is needed
across the width of the girdle, and binary pattern must be suppressed. In addition, ternary
pattern must be maintained uniformly along the whole circumference of the girdle even though
this is substantially greater than girdle width. The first of these requirements is easily satisfied
by introduction of a gradient with symmetry about the middle of the girdle. This both guaran-
tees the central maximum and suppresses binary pattern (as in ﬁgure 66). Such a gradient is
by no means unreasonable in biological terms. The girdle has a corresponding symmetry in
structure, being thinner at the edges than in the middle, and, because it lies exactly between
the two semicells, the arrangement of cellular structure around it has this same symmetry. The
author has not, however, been able to satisfy the second requirement, of preventing the appear-
ance of peaks around the circumference. The problem is illustrated in figure 23. With a sym-
metrical parameter gradient across the width corresponding to that in figure 64, the desired
waveform appears initially from random disturbances as shown in figure 23a. This then
develops, in all the computations tested, into a row of peaks (figure 234). One way of resolving
this problem within the context of reaction-diffusion theory is to assume the girdle to be
anisotropic with regard to diffusion. To get the desired pattern, diffusion would have to be
slower and Ay, consequently smaller across the width of the girdle than around its circumference.
This is not the only situation in plants in which this type of anisotropy may be required for
pattern to be explainable in reaction-diffusion terms. Regularly spaced ring-like thickenings
are characteristic of xylem cells in many vascular plants (see, for example, Hepler & Fosket

40 Vol. 294. B
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1971). Here also the longitudinal spacing, between rings, is much less than the circumference
of the cell, yet the rings appear to be deposited uniformly around this circumference.

Many elongate or cylindrical algal cells divide by forming septa midway along their length
or at the midpoint of separate, internal wall structures as in the desmid girdle or the formation
of H-shaped wall segments in Microspora (Pickett-Heaps 1973). Given the potential of ternary
waves to specify the midpoint of structures on which they develop, reaction-diffusion mechan-
isms could be employed quite generally by cells as a means of positioning such septa. Classic
experiments by van Wisselingh (1909) on Spirogyra are generally interpreted as providing

25
24

(a) >’< (a)
|
T 1
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Ficure 24. Formation of septa at an unusual position in Spirogrya; (a) and (b) from figures 13 and 20 respectively
of van Wisselingh (1909).
FIGURE 25. Mitosis and septum formation in double cells of Micrasterias. After Waris & Kallio (1964).

evidence to the contrary. Van Wisselingh used centrifugation to displace cell nuclei along with
much of the cells’ cytoplasm, and observed that the site of septum formation was likewise dis-
placed in many instances. He concluded that the position of the nucleus was the most important
determinant of septum position. His findings are complicated by a number of anomalous results,
however. The most interesting of these in the present context is illustrated in figure 24. Large
nuclei, probably fused daughter nuclei from the previous division, were sometimes found
trapped in a centrally located but incomplete division septum (figure 24 4). At the next division,
two new septa were initiated, in some cases located halfway between the existing septum and
the end walls (figure 244). This suggests that cells may have the ability to bisect their length
regardless of nuclear position, using existing septa and end walls as reference points.

While without repetition and reinterpretation the Spirogyra experiment cited is merely
suggestive, the evidence against control by the nucleus or other obvious cytoplasmic organelles
is much clearer for desmids. By various experimental means, double cells with two isthmuses,
but only one nucleus, can be produced (figure 254). At mitosis, septa develop at both isthmuses
(figure 25b). Judged by the ability of the three cells thus formed to at least begin normal
morphogenesis (the anucleate cell eventually arrests), there can be little doubt that the girdle
and septum at the anucleate isthmus are normally constructed. Normal septa are also formed
even when the nucleus is entirely displaced from the isthmus by antimicrotubule agents
(Lehtonen 1977). Septum position is not therefore a consequence of nuclear position in desmids
nor, by experimental means, has any more likely governing influence been identified.
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(111) Branching patterns

A dichotomous branch corresponding with the J,, pattern has been suggested above as
appropriate for Micrasterias, in which two lateral wings and twofold symmetry is the normal
condition. For Tyson’s Brusselator, the importance of symmetry features of the system as a
whole in selecting and orienting a particular pattern mode from a range of competing modes
has been repeatedly stressed (§3.3). The correct reproduction of twofold semicell symmetry in

FicURE 26. Vegetative cell morphology in Staurastrum. (a) S. duacense, (b) S. sebaldi and (c) S. ophiura. From West
& West (1923, vol. 5). (Magn. x 350.)

Micrasterias after each division is then not surprising if some means exists whereby the parent
semicell can bias this selection process in favour of its own symmetry. What remains mysterious
is the mechanism by which this is accomplished. The simplest possibility, that isthmus and
septum shape determine the pattern, has the following problem: some species do have an
isthmus that is roughly oval, with twofold symmetry, but branching occurs across the short axis
(Lacalli 1976) rather than the long axis as predicted for Tyson’s model (figure 14).

Aberrant forms of Micrasterias with three or four wings per semicell arranged to give three-
or fourfold symmetry have been isolated and maintained in culture (Waris & Kallio 1964).
Such cells are usually diploid whereas the normal vegetative cell is haploid. If one assumes that
isthmus size is unchanged, this combined symmetry and ploidy change is consistent with the
size dependence of the corresponding pattern modes. The twofold pattern, J,,, should dominate
over a size range of from 1.2 to 1.8ry (from figure 11). If doubled nuclear ploidy results in
doubled rate constants, any spacing governed by a reaction-diffusion mechanism will, by
equation (2) in §8, be reduced by a factor of 2-%. The isthmus is thus made effectively larger,
its new size range being from 1.7 to 2.57,, a range dominated for the most part in figure 11 by
J3, and J4;. For a new semicell symmetry to be established, this change in most-favoured
pattern mode must presumably win out over the influence of the parent semicell, which would
favour the existing symmetry. Once established, maintenance of the new pattern might be

40-2
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much easier. The existence of uniradiate clones of Micrasterias, with a single lateral wing and
thus onefold symmetry, is not easily explained by Tyson’s model. The corresponding pattern
mode, J;,, was never observed in computations, and it is difficult to envisage how it might be
generated.

Other genera, in their normal morphology, show a wider range of symmetry types than does
Micrasterias. Staurastrum has perhaps the widest; cells have been recorded with between two and
eleven radially projecting spines, and a corresponding two- to elevenfold symmetry. Species
with predominantly twofold symmetry are known (figure 264). More commonly, species have
threefold symmetry (figure 264) or variable symmetry within a restricted range. For example,
the species illustrated in figure 26¢ has variable numbers of spines within the range of four to
nine. These branching patterns can all be produced by means of Tyson’s Brusselator, and it
may be significant that patterns with a single ring of more than 12 peaks, which cannot be
produced in computations, are also not found in Staurastrum.

Repeated terminal branching of semicell lobes and spines is observed during the later stages
of cell morphogenesis, and this is conceivably also due to the action of a reaction—diffusion
mechanism. In such secondary branching processes, the morphogenetically active area becomes
reduced to only the tips of the branching lobes and spines. Secondary branching will not be
dealt with here because an adequate theoretical treatment would require a detailed recon-
sideration of the problem of boundaries and boundary conditions, but the involvement of
pattern changes like that shown in figure 15 is clearly a possibility.

(iv) Wall ingrowth versus outgrowth

The developmental sequence in figure 21 is intended to deal satisfactorily with pattern
specification whether the consequence is an ingrowth or outgrowth. Both types of growth
involve localized cell wall deposition. The significant difference between them is that ingrowths
(e.g. the septum) are plate- or fold-like, presumably the consequence of a lincar growth site
maintained at the leading edge, while outgrowths are spine- or lobe-like and thus arise from a
radially symmetric or point growth site. The author knows of no exceptions to this generaliza-
tion in the desmids.

A most striking feature of desmid development is that the same region of the developing
semicell can produce ingrowths or outgrowths depending on species and conditions. Thus, for
example, the establishment of a girdle and septum as shown in figure 25 is a general feature of
cytokinesis in all placcoderm desmids so far examined. During conjugation, an identical girdle
is formed at the isthmus, followed by outgrowth of a lobe-like conjugation papilla (figure 27).
Because of the size of the papilla, it is difficult to determine the exact site at which growth is
initiated, but, to judge from the position at which growth is maximal, a site at or near the
midpoint of the girdle is quite reasonable. What is normally a linear growth site is therefore
converted, during conjugation, to point growth. The converse can be illustrated by comparing
the filamentous desmid Bambusina (figure 28) with the solitary species so far mentioned.
While in Micrasterias and Staurastrum the primary branch generates a ring of spines or lobes, in
Bambusina a ring-shaped ingrowth develops at a corresponding site on the completed septum
(figure 284). This allows the daughter cells to telescope out as they expand following deposition
of the secondary wall layer (figure 284). In other filamentous forms (e.g. Desmidium), two or
three similar, but smaller, ingrowing rings form at points corresponding with the sites of out-
growths in non-filamentous genera with two- and threefold symmetry.
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While Tyson’s Brusselator will generate both linear and point growth sites (i.e. rings and
peaks respectively), it does not appear that the controlling factors in computations, symmetry
and boundary conditions, bear much relation to the apparent controlling factor in the biological
situation, whether growth is inward or outward. To assess the success of the model, there are
some situations in which the tendency to peaks is too great, as in its failure to generate an evenly

Ficure 27. Formation of the conjugation papilla in Micrasterias seen (a) externally and (b) in section.
After Kies (19734)-

(b)

Ficure 28. Cell expansion following division and septum formation in Bambusina, the new wall shown as a heavy
line. After Gerrath (1968) and Pickett-Heaps (1975).

ingrowing septum (figure 23). In other situations, a pattern of peaks is too little favoured over
the ring, thus making it difficult to obtain two and three peaks on a circular disc despite the
common occurrence of this pattern in various desmid genera. There are two ways of adjusting
the theory to deal with these discrepancies. (1) A given pattern may be supposed to be due to
the action of a single patterning mechanism, but one operating differently depending on
whether an ingrowth or an outgrowth is to be produced. The basic mechanism might be
assumed, for example, to be similar to Tyson’s Brusselator, but with greater tendency to produce
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linear pattern modes. When the wall is not expanding, these patterns would be expressed, and
wall deposition along the linear growth site would result. With wall expansion, perhaps with
greater turgor, additional features introduced into the mechanism by this change would de-
stabilize or suppress the linear modes in favour of separate peaks. (2) Alternatively, there could
be two pattern models operating throughout, one to give linear modes, the second to give a
one-dimensional spacing of peaks along these. Harrison et al. (1981) use this approach in
dealing with pattern in Acetabularia (§5). It has the advantage that no limit is placed on the
number of peaks that can develop on a ring.
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FiGURE 29. Septum dimensions as reported in table 1 for (a), (b) Micrasterias and Cosmarium and (c) Bambusina.

TABLE 1. SEPTUM DIMENSIONS

2B/A C/B Ap/pm source of data
prediction 3.34 0.45-0.58
Cosmarium botrytis 3.6 — 13.1 Pickett-Heaps 1972
Micrasterias rotata 3.5 0.57 30.0 Lacalli 1973, 19754

Bambusina brebissonii 3.54 0.49 11.1 Gerrath 1968

4.3. Quantitative predictions

Quantitative predictions based on Tyson’s Brusselator are compared with published informa-
tion on desmid morphogenesis in tables 1 and 2.

Table 1 deals with the relative proportions of the girdle and septum, and with the positioning
of structures associated with the primary branch. Measurements on three species give very
similar results which, within error, agree with predictions. From figure 11, based on linear
patterns, the expected ratio can be computed between the maximum diameter of circular disc
on which J, pattern can be maintained (taken as the point where the J,; curve crosses J.,),
and the minimum size in one dimension for maintenance of ternary pattern. This is compared
in the first column of table 1 with the measured ratio of septum plus girdle diameter at septum
completion to girdle width at septum initiation (2B/4 as shown in figure 29). The estimated
error in the measurements is on the order of 109,. Bambusina probably gives the most reliable
data. Since there is no cell expansion until secondary wall deposition is well advanced in
Bambusina, there is no need for measurements to be made at particular developmental stages.
For the rings and circles of peaks generated by branching on a disc, a range of values for the
ratio of their radius to the radius of the disc obtained from linear patterns and nonlinear com-
putations is given in the second column of table 1. This is compared with the ratio of the distance
of the sites of morphogenetic activity on the septum from its centre to the radius of septum plus
girdle (C/B in figure 29). For Micrasterias, C is measured to the sites of lobe outgrowth as
determined by laser experiments (Lacalli 19754). For Bambusina, C is measured to the site of
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the ingrowth. The value of Am, in the third column, is calculated from isthmus diameter. If
girdle plus septum radius is taken as 1.36ry, as an upperbound, isthmus diameter works out to
1.2A 1. Observed C/B values support the choice of zero-flux over fixed concentration boundary
conditions for models of septum pattern. Morphogen maxima lie much closer to the boundary
in the latter case, at least for the assumption of boundary concentrations near the steady state
(e.g. C/B ~ 0.75-0.9 in Harrison et al. (1981)).

TABLE 2. RATIOS OF INTERSPINE DISTANCE TO ISTHMUS DIAMETER

ratio Ap/pm source of data
prediction 0.71 — —
Cosmarium botrytis 1.0 12.1 Brandham 1965, fig. 17
C. botrytis 1.0 13.3 Berliner & Guth 1979, fig. 5
C. turpinii 1.0 12.1 Starr 1958, fig. 19
Staurastrum denticulatum 1.23 10.8 Brandham 1965, fig. 24
S. furcigerum 1.0 11.5 Pickett-Heaps 1975, fig. 6.169
Euastrum verrucosum 1.17 12.2 Kies 1973 b, fig. 16
Micrasterias papillifera 1.27 12.6 Kies 1972, figs 3, 4
M. papillifera 1.25 16.5 Coesel & Teixeira 1974, fig. 3

Although the physiological condition of the cell during conjugation is quite different from at
mitosis, a relation might be expected between isthmus diameter (1.2A) and interspine distance
on the zygospore (0.85Am from §3.2). The predicted ratio of spine spacing to isthmus diameter
is then 0.71. Table 2 lists observed values of this ratio for six species from four genera. In all
cases the observed ratio is larger than expected, that is, spines are too far apart by factors of
between 1.4 and 1.8. An interpretation of this, following equation (2) in §8, is that rate con-
stants in the zygospore are between 2 and 3.25 times smaller than in vegetative cells. Despite
the discrepancy between prediction and observation, the narrow range of observed ratios
among quite different genera is an indication that a common patterning mechanism may be
involved in development of both semicells and zygospores.

In summary, Tyson’s Brusselator accounts in a general terms for the basic morphogenetic
patterns in desmids in that it generates hexagonal arrays and branching patterns of various
types with required size dependence. While the model has some unsatisfactory features with
regard to semicell pattern (e.g. too great a tendency to give peaks to account for septum
initiation), there remain consistent regularities in desmid proportion and patterning that
require explanation. These are as yet unexplained except by reaction-diffusion theory.

5. ACETABULARIA

Acetabularia cells are remarkable in size; the nucleus is located at the attached base of the
cell, and from this arises a stalk that may be several centimetres in length. The stalk elongates
by growth at its tip, which periodically flattens and produces a whorl of hair initials (figure 30).
These then elongate and branch. As the cell matures, a final whorl of initials is produced from
which the reproductive cap develops. In most species, this last whorl has more initials than
previous whorls, and these fuse as they grow to form the rays of the disc-shaped cap. All of
the whorls involved in this morphogenetic sequence, whether of hairs or cap rays, appear to
have a very regular spacing of pattern elements. Only the hairs are discussed here. They have
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been the subject of extensive study by Harrison et al. (1981) and appear, because of greater
variability in number, to be more suitable for pattern analysis than are cap rays.
Comparatively few scanning micrographs are available of the early stages of hair formation,
but all those examined by the author show spacing between hair initials that is too regular to
be accounted for by an inhibitory field mechanism. For example, R, = 1.82 in the micrograph
from which figure 30 is taken. More examples are needed to confirm this result, however.

FIGURE 30. An early stage in the development of a whorl of hairs by Acetabularia major. From a scanning micro-
graph supplied by S. Berger also published as fig. 3, pl. 1, in Berger et al. (1974). (Magn. x 120.)

Values for the average spacing between hair initials can be calculated from counts of hair
number and measurements of tip diameter at the time the initials first appear. A large sample
of such measurements has been compiled for 4. mediterranea (Harrison et al. 1981), which show
constant spacing over a range of tip sizes (i.e. larger tips have more hairs) with spacings on the
order of 20 pym at 20 °C and a well defined dependence of spacing on temperature within a
range of about 20 + 5 pm. Pattern scale is thus very similar to that seen in desmids (§4.3).
The regularity and constancy of the spacing of hair initials strongly suggest the possibility of
pattern control by a reaction—diffusion mechanism. The conversion of the site of morphogenetic
‘action’ during hair formation from a central point (during tip growth) to a ring (flattening)
and then to a ring of points (hair initials) clearly parallels the computed pattern changes dis-
cussed in §3.3, and is evidence for the involvement of a mechanism like Tyson’s Brusselator.
One important difference is, however, that Acetabularia produces significantly more initials than
the computed patterns have peaks. Harrison et al. (1981) resolve this problem by suggesting
that two Turing models may be needed, one of the Brusselator-type to produce the ring, and a
second to give repeated pattern in one dimension around the circumference of the ring, with
the number of peaks proportional to circumference. The second model therefore needs Ap
dependent on cues from the first, for example, small A where concentration maxima are
generated by the first model (around the ring) to give multiple peaks and large Ay elsewhere so
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that no other peaks form. The concentration dependence required of Am to achieve this can
be introduced into the parameters of Turing-type models in various ways. Harrison & Lacalli
(1978) discuss one example of how this might be done.

6. DIATOM PATTERNS

Although there is an extensive literature on valve morphology of diatoms, the development
of form in these elaborate structures has been documented in only a few cases. Following cell
division, each daughter forms a silicalemma, a flattened, membrane-bound structure lying just

Ficure 31. Developing valves isolated from the pennate diatom Navicula pelliculosa showing (a) an early stage
(magn. x20000) and (b) a later stage with cross-bridges forming between the transapical ribs (tr.) (magn.
% 16000). From figs 42 and 5a of Chiappino & Volcani (1977).

beneath the membranes dividing the two cells. Silica is then deposited within this to form the
new valve. Certain features of valve morphology appear to depend upon the ordering of
cytoplasmic structures (e.g. the shape of the raphe according to Pickett-Heaps et al. 1979), but
a number of periodic patterns develop as part of valve morphogenesis that cannot be explained
in this way. In terms of pattern scale, these differ from spacings in desmids and Acetabularia by
almost two orders of magnitude, but otherwise show many similar pattern features. Figure 31
shows two stages in the outgrowth of transapical ribs in the pennate diatom Navicula. Growth
is by addition at the tips of the ribs, which appear irregular in the figure because the newly
deposited tip material is partly eroded by the preparatory techniques used. The pattern in
figure 31 of interest in the present context is the very regular spacing of ribs along the axial
raphe. For ribs along one side in each of figure 314, b, R, equals 1.88 and 1.90 respectively,
with spacings of about 0.25 pm. In addition, dichotomous branching is involved in maintaining

41 Vol. 204. B
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the regular spacing wherever the ribs diverge as a result of their growth. Branching is more
clearly seen in centric diatoms (figure 324), where radial outgrowth from the centre (Schmid &
Schulz 1979) results in much greater divergence and branching. These patterns are most
readily interpreted as two-dimensional consequences of a one-dimensional spacing mechanism
operating along the growing edge. The patterns constitute a record over time of the adjustments
that the growth sites responsible for the ribs have made relative to one another.

Ficure 32. Frustule morphology of selected centric diatoms. (a) Detonula confervacea (magn. x 6000) and
(6) Detonula pumila (magn. x 12000). From figs 60 and 71 of Hasle (1973). (¢) Thalassiosira eccentrica, the edge
of the growing valve during development (magn. x 15000). From an unpublished scanning micrograph of
an isolated valve supplied by A. M. Schmid.

A second type of periodic pattern, a regular array of hexagonal cells resembling a honey-
comb, is characteristic of many centric diatoms (see, for example, Hasle 1973). The initial
pattern of silica deposition in these cases (figure 32¢) is essentially the reverse of the hexagonal
pattern seen in desmid zygospores, corresponding to the valleys in computed X morphogen
distributions (in figure 94) rather than to the peaks.

A comparison of different parts of the same valve in some species and between valves in
related species frequently shows regions of transition between the two types of pattern just
described, from radial ribs (figure 324), to ribs with cross-bridges (figures 314, 324), to honey-
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comb patterns of varying degrees of regularity (figure 325; see Hasle (1973) for additional
examples). This represents a transition from a situation in which the most obvious periodicity
is along the one-dimensional edge of a two-dimensional structure to one in which the two-
dimensional surface of the structure is itself highly ordered. Although Tyson’s Brusselator can
generate both patterns separately, it is not clear whether it can be expected to produce the two
in turn. This is because the peak that usually branches in one dimension, the X peak, ends up

FiGure 33. Two possible ways the silicalemma (sl.) may invest pattern elements of the developing valve, shown
here as a bifurcating rib. (a) The silicalemma is continuous between adjacent ribs so that distance can be
measured directly across intervening membrane (arrow). (b) The silicalemma conforms to the outline of the
ribs so that distance between adjacent ribs can be measured directly across intervening cytoplasm or cell
membrane (c.m.), but only indirectly (curved arrow) along the silicalemma.

as a peak rather than a valley in two dimensions. The pattern sequence could conceivably be
generated by Tyson’s model if deposition were to occur in regions with high concentrations of
the Y morphogen, since Y, out of phase with X, is at a maximum along the valleys in the
hexagonal pattern, and, also, the pattern change in one dimension for the special case of low
kg values (as in figure 3) would produce a dichotomous branch in all ¥ maxima. Other reaction—
diffusion models may be found, however, that give patterns corresponding with those seen in
diatoms without requiring the additional assumptions of low kg and Y, which has very broad
concentration peaks, as the significant morphogen.

The complex arrangement of membranes around the developing valve deserves some
comment because of the role membrane may play in morphogenesis. The valve is composed
of amorphous silica, and R. Gordon of the University of Manitoba (personal communication)
has developed a model for pattern based on the solidification properties of the silica itself. An
alternative approach, adopted here, is to suppose that morphogenesis is a matter of where,

41-2
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within the silicalemma, the deposition of silica is allowed to occur. The membrane of the
silicalemma then becomes a prime candidate as a site of pattern formation. In the pennate
diatoms so far studied, the silicalemma is a pancake-like structure whose outer edge is smooth
rather than conforming to the outline of the developing ribs, as is shown in figure 334 (J. D.
Pickett-Heaps, A. M. Schmid, personal communication). In any interactions between adjacent
ribs involving the membrane, the effective distance between the ribs then corresponds simply
to the linear distance between their tips as shown, and the generation of one-dimensional
periodicity at the growing edge is quite reasonable. In the one centric diatom so far studied in
this regard ( Thalassiosira eccentrica, figure 32¢), the edge of the silicalemma appears to conform
to the outline of the growing valve as in figure 334 (A. M. Schmid, personal communication),
so that direct measurement of the distance between adjacent ribs would have to be across the
cytoplasm. As an alternative, pattern could be laid out in advance in two dimensions in the
adjacent cell membrane, and growth of the silicalemma and valve simply follow this as a
template. This may explain why the silicalemma might conform to the outline of the valves in
species with hexagonal patterns, but not in Navicula, since the latter requires that pattern be
generated as the valve grows, while the former may not.

7. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The analysis of pattern in the foregoing sections falls far short of proving that a reaction—
diffusion mechanism is responsible for algal morphogenesis. The author’s intent in cataloguing
and correlating observed and computed patterns is, rather, to suggest a phenomenological
framework for pattern formation, essentially a set of developmental rules, to serve as a basis for
further study. To collect more and better pattern correlations is clearly one way to verify and
refine such a framework, but an experimental approach is also possible. A common strategy in
experimental work on pattern has been to identify those elements of cell structure that are
required for pattern formation by testing whether, if they are damaged or destroyed, the
pattern is also destroyed. A better experiment is one that leaves the pattern intact, but alters
some pattern parameter in a way that can be quantified and interpreted. Within the context of
reaction—diffusion theory, pattern spacing is one parameter suitable for this kind of approach.

For reaction-diffusion models in general, the expression for spacing is of the form

Am = 2n(ZD[k)3, (2)

where 2 and £ represent various combinations of diffusivities and rate constants depending on
the particular model. For correct dimensionality, £ must behave as a first order rate constant.
Values for £ can then be determined if 2 and A, are known or can be estimated. For the
observed spacing in desmids and Acetabularia, if diffusion is assumed to occur in the cell mem-
brane (maximum 2 ~ 1078 cm?/s), k will be of the order of 0.1 s~1. For diffusion in an aqueous
medium (maximum £ ~ 103 cm?/s), kis 102 s~1. If £ is assumed to be temperature dependent
in the usual exponential fashion, £ = A exp (—E,/RT), and the magnitude of the pre-
exponential factor is roughly that of a typical first order chemical reaction (4 ~ 1012s71), an
expected value for the activation energy (£;) can be calculated. Under these assumptions, £,
is 18 kcal/mol (75 kJ/mol) for diffusion in a membrane and 14 kcal/mol (58 kJ/mol) for
aqueous diffusion. Both values are within a range that is reasonable for a first order reaction.
Harrison ef al. (1981) have developed their analysis of spacing further by examining the tem-
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perature dependence of equation (2), assuming similar exponential form for 2 and k. Using
Acetabularia, they show the logarithm of spacing to vary with reciprocal temperature in good
agreement with prediction and confirm the E;, values just given. This type of analysis shows
considerable promise as a means of investigating the physicochemical basis of pattern forma-
tion in detail.

For Tyson’s model, £ in equation (2) is replaced by (a2/d)* multiplied by a constant (§8.2).
If the model is accepted as, at least, a formal representation of reality, the rate constants in this
expression could still conceal considerable mechanistic complexity. Interpretation of the model
is, however, simplified by the involvement, in pattern formation, of a two-dimensional surface
in contact with a three-dimensional cytoplasmic reservoir. The formation step in the model
represents the appearance of Y in the system of interest, the cell surface. This may be by transfer
of Y from the cytoplasm rather than actual Y synthesis. The destruction step likewise corre-
sponds to loss of X from the system of interest whether or not actual degradation is involved.
These transfer reactions are likely to be mechanistically quite simple in comparison with the
chains of reactions usually involved in biosynthetic events. There is therefore some promise that
further study of the magnitude and behaviour of £ will yield useful information regarding
underlying reaction mechanisms.

Equation (2) is potentially of great importance with regard to identifying the site of pattern
formation. If pattern were generated in the cell membrane, any alteration of membrane
fluidity would affect spacing in a predictable way by changing 2. It would therefore be useful
to examine the effect on spacing of physical or chemical treatments known to alter membrane
fluidity (e.g. cause phase transitions) as an indication of the involvement of the membrane in
pattern formation. Further, simply because diffusion occurs at such different rates in membrane
and in aqueous solutions, even crude measurements of the time scale of pattern formation
might indicate which of these two phases is involved. Since diffusivities are of the order of 103
times smaller in membrane than in aqueous systems, 103 times longer is required for a given
pattern to develop or change in the membrane than in the cytoplasm or cell wall, if one
assumes that diffusion in the latter two is not impeded in some unexpected way. By way of
illustration: if the computations based on Tyson’s Brusselator are scaled in size to match
observed patterns in desmids and Acetabularia (§8.2), typical values for membrane diffusivities
give a time scale of 0.67 s per computational iteration (i.e. 1000 iterations ~ 11 min). The
time required for pattern to develop from the uniform steady state in computations depends
to a considerable extent on the fluctuation size used, but appears to require of the order of 104
iterations as a minimum (see, for example, figures 1 and 7). The time required for established
patterns to change and stabilize in response to growth similarly depends on how rapidly system
size is changed in the computations, but a few thousand iterations are needed in most cases.
This translates to a few tens of minutes in real time if diffusion is in the membrane. For aqueous
diffusion, the time scale is 6.7 x 10~*s per iteration, and equivalent pattern changes would
take only a few seconds. Morphogenesis in desmids and Acetabularia occurs over periods of
several hours in most instances. Pattern changes taking of the order of tens of minutes are
therefore a possibility, but are clearly near the limit of time available. In the event that further
observation shows patterns to change much more rapidly, the involvement of membrane in
pattern formation could well be ruled out.
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8. MATHEMATICAL AND COMPUTATIONAL DETAILS
8.1. Choice of parameter values

The conditions under which changes in parameters lead to changes in pattern behaviour for
two-morphogen Turing models are discussed by Lacalli & Harrison (1979) in terms of three
rate parameters, £y and ky, and n, the ratio of diffusivities (=%y/Px).

For Tyson’s Brusselator:

, d(a% — bd?)

ko= ( 2a% ) (a% 1 b (3)
/ d a? bd2
Ky = (2_) ”+ (4)

(7) (5)
(6)

ky
— — —(10)
(9)

Ficure 34. Turing’s conditions on parameters in terms of k; and & for n = 45. Numbering of lines (in paren-
theses) corresponds with the numbering of equations in the text. Numbers without parentheses refer to the
figures in which the parameter values indicated are used.

Significant boundaries in parameter space are defined by the following relations:

ky—ky = 4n¥/(n+1); (5)
ki—ky = 2; (6)
nky—ky = 2n?; (7)
ki+ky = 05 (8)

Kk, = —1. (9)

Stable spatial patterns are obtained for parameters falling within the region defined by the
intersections of (7), (8) and (9), as shown in figure 34. Tyson’s Brusselator is restricted to the
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region to the left of the dotted line, which is the limit for 4 decreasing to zero:
kiky = — % (10)

The locations of the parameters used in each figure are also shown in figure 34, with the
parameter gradients in figures 4, 5 and 15 drawn as heavy lines. The gradients were chosen to
give constant Am over their full extent. This is facilitated but not guaranteed by having a
gradient whose slope is + 1 in £}k space, parallel to (5) and (6). The gradient used in figure
15 crosses line (7). This is the boundary separating regions of positive and negative kg at Am,
lying to the right and left, respectively, of (7).

Parameters for individual figures are as follows.

Figure 1: a = ¢ = 1.06d = 0.00185, b = 0.0002, Dy = 0.01, n = 40, [ = 30. Fluctuations
of +0.0005 times X concentration were introduced at one array position per iteration. A
similar fluctuation size was used in the other computations.

Figure 2: initial parameters as in figure 1, with gradual change to 2, 0.5 Z; kg at Ay =
0.0013.

Figure 3: initial a = ¢ = d = 0.0025, b/ = 0.001, P = 0.01, n = 40, [ = 30, with gradual
change to 2k, 0.5 2; kg at Ay, = 5x 1075,

Figure 4: initial a = ¢ = 1.11d = 0.0025, b = 0.00068 at edge to 0.00036 at centre,
9« = 0.01, n = 40, [ = 30, with gradual change to 5k, 0.5 9.

Figure 5: as in figure 4 with reversed gradient in .

Figure 6: (a) as in figure 1 but with / = 20; () gradient in a from 0.00185 at edges to
0.00215 at centre.

Figure 7: a = ¢ = 1.06d = 0.0148, b = 0.0016, D = 0.005, n = 40. Intersecting lines
in the figure correspond with the centre of the grid squares used in the computation. In all
two-dimensional computations, fluctuations were introduced at between 5 and 20 array
positions per iteration. For this figure, 20 fluctuations per iteration of 0.0005 times X con-
centration were used.

Figure 96: py = 6x 1074, p = p' = 0.4, ¢ = 0.05, ¢’ = 0.025, u = 0.21, v = 0.27, D, =
0.005, 2, = 0.225.

Figure 11: as in figure 1.

Figure 12: initial values as in figure 1 but with 95 = 0.005, n = 20; k changed to 2, 2.5
and 5 times initial values in (b)—(d) respectively, r, = 12, Af = 1/12.

Figure 13: initial values as in figure 1 but with 25 = 0.005, n = 45; k changed to 1.35, 2,
3, 5 and 7 times initial values in (b)—(f) respectively.

Figure 14: as in figure 13 but with 1.35% in (a), 2k in (b)—(d).

Figure 15: initial a = ¢ = 1.025d = 0.0123, b = 0.001 at centre to 0.0071 at edges,
9 = 0.005, n = 45, changes to 1.65a, 1.65¢, 1.65d and 2.3b in (b); 2.45a, 2.45¢, 2.45d
and 3.556 in (¢)—(e).

Figure 23: (a) pattern at 4000 iterations, ¢ = 1.06d = 0.00555, a goes from 0.00555 at
edges to 0.0065 at centre, b = 0.0006, Dy = 0.005, n = 45; (b) pattern at 6000 iterations, a
goes from 0.0048 at edges to 0.007 at centre, ¢ = 0.0048, d = 0.00525, b = 0.0006, Dx =
0.005, n = 45. Boundary conditions in both are zero-flux along the sides and periodic at the
ends.
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8.2. Dependence of spacing on @ and k

The general equation for Ay given by Lacalli & Harrison (19784) becomes, for Tyson’s

Brusselator,
2 1
2 = amoy -2y [[(F) [k k] (11)

The expression in brackets in the denominator has narrow limits for reasonable values of 7.
Within the limits for stable pattern (figure 34), the value of k, — k; reaches a maximum at the
intersection of lines (7) and (10) and a minimum at the intersection of (7) and (8). The co-
ordinates of these points are (1+23%)/n¥, nd/(2+ 2}) and 2n¥/(n+ 1), — 2u¥/(n+ 1) respectively.
The range of possible values for the expression in brackets is then between (n—1)2/[n¥(n+1)]
and [(1+2%)/(2+24)] [(n—1)/n?]. For large , these limits can be approximated as 0.7 n¥ and
n? respectively giving values of 6 + 4 for a typical range of n from 10 to 100, sufficient to take
in molecules of quite different size and properties as long as they are diffusing within the same
medium. Taking n = 25, since Dy — Px ~ Dy for large n, gives

A% x 59y (d]a%)t. (12)

The arbitrary space and time units of the computations are readily converted to real units
by means of the above expressions for Ay. For computations in two dimensions, typical para-
meters are a = ¢ = d = 0.01, Iy = 0.2, which gives A, ~ 10. Observed spacings (desmids
and Acetabularia) are of the order of 2 x 10-3 cm. The spatial conversion factor appropriate to
these examples is then 2 x 10~% cm per spatial unit. For diffusion of small molecules in cell
membranes, 2 x 10-8 cm?/s (Poo et al. 1979), and the required time factor is then 0.67 s per
iteration. For an aqueous system, maximum values for diffusivities are around 10-% cm?/s,
and the time factor is correspondingly smaller: 6.7 x 104 s per iteration.
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